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We consider the use of preconditioning methods to accelerate the convergence
to a steady state for both the incompressible and compressible fluid dynamic equa-

tions. Most of the analysis relies on the inviscid equations though some applications

for viscous flow are considered. The preconditioning can consist of either a matrix

or a differential operator acting on the time derivatives. Hence, in the steady state

the original steady solution is obtained. For finite difference methods the precondi-

tioning can change and improve the steady state solutions. Several preconditioners

previously discussed are reviewed and some new approaches are presented.

*This research was supported by the National Aeronautics and Space Admimistration under NASA
Contract No. NASI-19480 while the author was in residence at the Institute for Computer Applications
in Science and Engineering (ICCASE), NASA Langley Research Center, Hampton, VA 23681-0001.




1 Introduction

Over the past years numerous researchers have tried to solve the steady state incompress-
ible equations for both inviscid and viscous flows. This also lead to attempts to solve the
compressible equations over a large range of mach numbers. A standard way of solving
the steady state equations is to march the time dependent equations until a steady state
is reached. Since the transient is not of any interest one can use acceleration technignues
which destroy the time accuracy but enable one to reach the steady state faster. For the
incompresible equations the continuity equation does not contain any time derivatives.
To overcome this difficulty Chorin [11] added an artificial time derivative of the pressure
to the continuity equation together with a multiplicative variable, 4 . With this artifi-
cial term the resultant scheme is a symmetric hyperbolic system for the inviscid terms.
Thus, the system is well posed and and numerical method for hyperbolic systems can
he used to advance this system in time.. The free parameter 3 is then chosen to reach
the steady state quickly. Later Turkel [54] extended this concept by adding the pressure
time derivative to the momentum equations and introducing a second free parameter a.
This system can then be analyzed for optimal a, 3. The resulting system after precon-
ditioning is no longer symmetric but can be symmetrized by a change of variables. This
will be shown in more detail later.

It 1s well known that it is difficult to solve the compressible equations for low Mach
numbers. For an explicit scheine this is easily seen by looking at the time steps. For
stability the time step must be chosen inversely proportional to the largest eigenvalue of
the system which is approximately the speed of sound, c, for slow flows. However, other
waves are convected at the fluid speed, u , which is much slower. Hence, these waves
don’t change very much over a time step. Thus, thousands of time steps are required
to reach a steady state. Should one try a multigrid acceleration one finds that the same
disparity in wave speeds slows down the multigrid acceleration. With an implicit method
an ADI factorization is usually used so that one can easily invert the implicit factors.
The use of ADI introduces factorization errors which again slows down the convergence
rate when there are wave speeds of very different magnitudes [49] .

For small Mach numbers it can be shown ([28], [31] ) that the incompressible equations
approximate the compressible equations. Hence, one needs to justifly the use of the
compressible equations for low Mach flows. We present several reasons one would still
nse the compressible equations even though the Mach number of the flow is small.

o There are many sophisticated compressible codes available that could be used for
such problems especially in complicated geometries

e For low speed aerodynamic problems at high angle of attack most of the of the
flow consists of a low Mach number flow. However. there are localized regions
containing shocks.

o In many problems thermal effects are important and the energy equation is coupled
to the other equations.

Therefore, one wants to change the transient nature of the system to remove this
disparity of the wave speeds. Based on an analogy with conjugate gradient methods




such methods were called [54) preconditioned methods since the object is to reduce the
condition number of the matrix. Another approach, in one dimension, is to diagonalize
the matrix of the inviscid term. One can then use a different time step for cach equation.
or wave. Upon returning to the original variables one finds that this is equivalent to
multiplving the time derivatives by a matrix. Hence, this same approach is named
characteristic time stepping in [55]. In multidimensions one can no longer completely
decouple the waves by diagonalizing both the entropy and the shear waves and so the
characteristic time stepping is only an approximation.

Thus, for both the incompressible and compressible equations we will cousider sys-
tems of the form

(1) we+ fo+g, =0,

This system is written in conservation though for some applications this is not necessary.
Our analysis will be based on the linearized equations so that the conservation form does
not appear in the analysis though it does appear in the numerical svstem. This sytem
is now replaced by

(2) P_lu.', + fl, + Gy = 0.

or in linearized form

(3) P lw, + Aw, + Bw, = 0,

[n order for this system to be equivalent to the original system in the steady state
we demand that P have an inverse. This only need be true in the flow regime under
consideration. We shall see later that frequently P is singular at stagnation points and
also along the sonic line. Thus. we will only consider strictly subsonic flow without a
stagnation point or else strictly supersonic flow. For transonic flow it is necessary to
smooth ont the singularity in a neighborhood of the sonic line. We also assume that the
Jacobian matrices A = T)“L and B = %“L are simultaneously symmetrizable. In terms of
the "symmetrizing’ variables we also demand that P be positive definite. We shall show
later in detail that it does not matter which set of dependent variables are used to develop
the preconditioner. One can transform between anv two sets. of variables. The choice
of variables is dictated only by convenience in constructing the preconditioner. Popular
choices are two out of density, pressure. enthalpy, entropy or temperature in addition to
the velocity components. Thus, when we are finished we will analvze a system which is
similar to (3) where the matrices A and B are symmetric and P is both symmetric and
positive definite. Such systems are known as symmetric hyperbolic systems. One can
then multiply this system by w and integrate by parts to get estimates for the integral of
wi.ie. energy estimates. These estimates can then be used to show that the system is
well posed. We stress that if P is not positive then we change the physies of the problem.
For example, if P = —/ then we have reversed the time direction and must therefore
change all the bounday conditions. Hence, to be sure that the system is well posed with
the original type of boundary conditions we shall only consider the svimmetric hyperbolic
svstem. For more general systems one must use a more complicated analysis to show
well-posedness for the initial-boundary value problem ([30]. [63)).
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With these assumptions we see that the steady state solutions of the two systems
are the same. Assuming the steady state has a unique solution it does not matter which
system we march to a steady state. We shall later see that for the finite difference
approximations the steady state solutions are not the necessarily same and usually the
preconditioned system leads to a better behaved steady state.

We can also look at (3) from a different viewpoint. We assume that the matrices A
and B are symmetric and P is positive definite. It is well known that for the Euler equa-
tions that the matrices A and B cannot be simultaneously diagonalized by a similarity
transformation. However, the matrix P has changed the equation. Since P is positive
definite there exists a matrix Q so that P = Q@Q*. We then introduce a new variable
w = Qv. For constant coeflicients A, B (3) is replaced by

(1) v+ QAQu, + Q*BQuv, =0,

Thus, the diagonalization question changes and we wish to know if A and B can
be simultaneously diagonalized by a congruence transformation (Q*AQ) . A sufficient
condition for this to be true is that there exist numbers wy,wy so that wA + wy B is
positive definite. It is shown in [53] that this true for supersonic flow. Hence, we have
shown that for supersonic flow one can introduce a preconditioning matrix so that the
equations (constant coefficients) are diagonalized. However, this is not true for subsonic
flow. We shall later show that using differential operators one can diagonalize the system
even for subsonic flow.

2 Incompressible equations

We first consider the incompressible inviscid equations in primitive variables.

ur +v, =

—_
A
—

U +uly +vu, +pr =
v + uvy + vvy, + py

Il

We consider generalizations of Chorin’s pseudo-compressibility method [14]. Using the
preconditioning suggested in [54] we have

|
/—ﬁp, +u,+v, = 0

(6) %ut +uu, +vuy+p, = 0
/m)
/—V—W + uv, + vy +py = 0

or in conservation form

1
?p, +u,+v, = 0




(7) (a—;z]lliug + (W +p)s + (wv)y = 0
(a+ 1)

P v+ (wo), + (VP +p), = 0

Hence, (7) reduces to the original pseudo-compressibility method when o = 0. The
couservative form reduces to the basic method when o = —1 . We can also write {7) in
matrix form using

/82 0 0 A 00
(8) Pr'=1{ au/f* 1 0 Pr={ —-au 1 0
av/fB* 0 1 —av 0 1
1e.
1/82 0 0 P 010 p 0 0 1 p
(91 au/B* 1 0 u +1 1 u 0 u +]0 v o0 u =0
av/pB? 0 1 v/, 0 0 u v/ 1 0 v v/,

Multiplying by P we rewrite this as
(10) wy + PAw, + PBw, =0
We also define

(ll) D:w1A+sz —]Sa)l,LUle

where wy,w; are the Fourier transform variables in the x and y directions respectively.
The speeds of the waves are now governed by the roots of det(Al — PAw, — PBw,;) =0
or equivalently det(AP™' — Aw, ~ Bw,) = 0. Let

(12) q = uw; + vw,
Then the eigenvalues of D are
(13) do=gq
dy = 1/2 [(1 —a)g (I —a)grt 4ﬂ2]

Note that in the special case a = | we have

(14) dy = +8

and so the ‘acoustic’ speed is isotropic.

We see that the spatial derivatives involve symmetric matrices, i.e. D is a symmetric
matrix. Thus, while the original system was symmetric hyperbolic the preconditioned
system is no longer symmetric. In ([54]) it is shown that as long as

(15) B2 > a(u? +v?)




then the system is symmetrizable. Hence, for any nonnegative o the system is always
symmetrizable. Recall that a« = 0 for the original pseudo-compressibility equations in

primitive variables (7) while &« = —1 for the original pseudo-compressibility method in
conservative variables (8) For & = 1 we need

(16) 3% > (u? +v?)

On the other hand the eigenvalues are most equalized if 32 = (u? 4 v?). Hence, we wish
to choose 3 slightly larger than u? + v?. However, numerous calculations verify that in
general a constant /3 is the best for the convergence rate. The reasons for this are not
clear.

However, we wish to stress that 3 has the dimensions of a speed. Therefore, 8 can not
be a universal constant. There are papers that claim that 8 = 1 or # = 2.5 are optimal.
Such claims can not be true in general. It is simple to see that if one nondimensionalizes
the equation then 3 gets divided by a reference velocity. Hence, the optimal ‘constant’ /3
depends on the dimensionalization of the problem and in particular depends on the inflow
conditions. In most calculations the inflow mass is fixed at one or else p+ (u?+v?)/2 = 1.
Such conditions will give an optimal 3 close to one. However, if one chose the incoming
mass as ten then the optimal 3 would be closer to ten.

Van Leer, Lee and Roe considered the compressible equations. They wanted a sym-
metric preconditioner so that there would be no question of well posedness. We now
translate their resuits to the incompressible equations (1). They assume that the flow is
aligred with the x direction and so v=0 and |u]? is the total speed of the fluid. Their
preconditioner in this coordinate system is

‘ [%|u|2 —[%u 0
(17) P=| —zu 1+ 0
0 0 T

Choosing 7 = | preserves the speed of the shear wave while choosing 8 = 1 gives an
1sotropic ‘acoustic’ wave (20) the magnitude of this acoustic wave is determined. In
order to compare this formula with the previous formulas we wish to reformulate this
preconditioner for the case where the flow is not aligned in the x direction. We denote
the matrices in the streamwise and perpendicular directions as A; and A respectively.
We next define the rotation matrices as

1 0 0 1 0 0
U=10 cosf sind Ul'=1] 0 cosd —sinb
0 —simf cosO 0 sinf cosf

To get the streamwise direction we shall choose

cosl =

u
Vu? 4+ v?
v

Vu? 4 v?

One can then verify that given the original matrices A, B.

sinf =

by |




(18) Ay = U(Acos + Bsinf)U™!
Ay = U(—Asinb + Beosb)U™!

Given numbers &y, 0, for Ay, AL we define

wy = Wycosl — Oysinb

wy = wysinb + ycos6

note
2 22 2
wy +wi = wy +w;.

Also define

P=U"PU.

Then it is easy to verify that
P(Ad + ALd) = U [P(Aw; + Bw,)| U™

Therefore, the appropriate preconditioner is P given by

u? + v? —u —v
u2 uv
(19) Py=1 —v lI+tam &=
2
uv U
—-v ) 1+ Py

Note that P.A,B are symmetric matrices. This does not imply that PA or PB are
symmetric. However, this is still a symmetric hyperbolic system and so the standard
energy estimates prove the well posedness of the system. We also see that the eigin-
values do not change if we use the streamwise direction or the full 2D form. Thus, the
eigenvalues of the preconditioned system are

(20) dy = Vi + vy = wwy +vwy = g
dy = £Vu? + v?
dy are the same as in (13) if we choose a = 1 and 3 = Vu? + v2.

As noted before, with the preconditioner of Van Leer et. al. one cannot have the
usual shear speed together with an isotropic ‘acoustic’ wave speed with an arbitrary mag-
nitude. With therefore, consider a modification of their preconditioner. In streamwise
coordinates it is given by

3% —& 0
(21) P=| -& 6 0
0 0 1
with ,
. ,."fl + 332 — u? . 2
o= - , 0=—, u#0
u u

6




Choosing % = u? gives the original preconditioner of Van Leer et. al. for incom-
pressible flow. In general nonaligned coordinates this becomes

/32 —au — Qv
2a—1)u? 2a—1)uv
(22) Pyy=| —au 1+ (2u2+1v)2 (2112+1v)2
. 2
—ov gl (i
B2 B8 — (u? +0?) 2 | 2
a= u? + v? ' w0

Now, we have the condition 32 > u? + v? (cf. 16). The speeds are now given by
d() =4q
d:i: = :‘}:/3

This can now be compared with (14) for Pr.

Numerous computer runs have shown that Pt works best with 4 constant and not
depending on the speed. To date there have been no computer calculations for the
incompressible equations with Py .

These examples show that the preconditioning is not unique. If fact, it is straightfor-
ward to see that the transpose of Pt is also a preconditioner with the same eigenvalues
for the preconditioned system. In general, these various systems will have similar eigen-
values but different eigenvectors for the preconditioned system. Numerous calculations
show that the system given by Pr is more robust and converges faster than that with
the transpose preconditioner. This shows that it is not sufficient to consider just the
eigenvalues but somehow the eigenvectors are also of importance.

3 Compressible equations

The time dependent Euler equations can be written as

1 1
P + E(um +opy)+us+v, = 0
(23) Uy + uuy + vy, + Pz
p
py 0

v+ wvy + vy + — =
p
Si+uS,+vS, = 0

The first general attempt to replace this by other systems of equations with the same
steady state was by Viviand ([59],[27]). He considered both incompressible and com-
pressible isoenthalpic flow. We will consider preconditionings that are a generalization

of (9)

L 000 p 21000 p 2010 p

= 1 0 0 u L w00 u 0 » 00 u

},‘{2 P :O
20 10 vl 10 0 w0 r+§0v0 v

0 00 I S/, 0 00 u S/, 0 00 v V.

-1




Note that if we use %-:3 instead of dp the matrices become symmetric. We next present
the eigenvalues of P D (defined in (11). Let

(24) q = uwy + vwy
then
(25) do = q

de = 1/2|(1 —a+ 8%/*)g £ /(1 —a + 32/c?)2q? + 4(1 — q'z/cz)/)"z}

If we consider the special case a = 1 4 3?/c? we find that the ‘acoustic’ eigenvalue is
I 2
given by

(26) dy = /(1 = q*/c?)3?

Hence, these eigenvalues are isotropic in the limit of M going to zero. However,
this eigenvalue vanishes at the sonic line and so the matrix is singular. In general, if
we demand that the acoustic eigenvalues be isotropic then we have a singularity at the
sonic line where the eigenvalues cannot be isotropic. The two ways out of this difficulty
are either to smooth the formulas near the singular line or else to give up on isotropy.
For example in [34] a is chosen as zero. This results in a ratio of about 2.6 between the
fastest and slowest wave speeds at M = 0. However, now the formulas are regular at
the sonic line. This difficulty is not a property of the preconditioning just presented but
applies equally to all preconditioners e.g. that of Van Leer et. al. which will now be
presented.

The Van Leer, Lee, Roe preconditioning [55] for general non-aligned flow in ( Jdu, dv,dS)

variables is

G%M" —;211/(' _2;_21»/C 0

(27) Py = _h%u/(‘ (ﬁz + l) 2+v2 + Tuz+z (/i2 + l)u;:_]”z u? 0
“[3_T2'1’/C (ﬁ_z + l)“z’fz,z ([52 + l) 2+,,2 +7 +1,2 0

0 0 0 1

g = {\/1—/\12, M <1,

MZ—-1, M>1;

__ [ VIR M<l
Tl VI=MTE, M >

At the sonic line 4 = 0 and 7 = 0 and the matrix becomes singular. In both
these examples the preconditioner was constructed based on using (p,u,v,S) as the
dependent variables. The reason for this choice is that the matrices are essentially
symmetric which this choice. However, if another choice of variables is more appropriate
that introduces no difficulties. Thus. for example [13] recommend the use of (p,u. v, T)
variables for the Navier-Stokes equations. Given two sets of dependent variables w and
W let W, be the Jacobian matrix —’,% Then. we have dW = W, dw. So we can go
between any sets of primitive variables or between primitive variables and conservation
variables. In particular since the equations are solved in conservation variables we have
several ways of going from the primitive variable preconditioner to a conservation variable




preconditioner. Thus, the choice of variables used in constructing the preconditioner is
dictated by mathematical or physical reasoning and then the preconditioner can be
transformed to any other set of variables.

e We can construct the preconditioner matrix for the conservation variables. If W
are the conservative variables and w are the primitive variables the Poonservative =

( ‘/‘"w )— ! Pprimitir'f’( l"'/'m)-

Let W denote the conservative variables (p,m,n, E)'. with m = pu.n = pv . let w
denote the primitive variables (p, u, v, S)! and let W denote (p,u,v.T)". Then

L0 0 %
ow | o 0 =%
e ;1;“, 0 p -5
M?
2(’7_1) m n f;
!’W—I!(qu-HIZ! _'_(,) _ l)u _(,7 — l)ly = |
. u 1
o _ —; : ) X
oW -~z 0 , 0
So=0e+?)2= 2 L=luS (DS (o1)s
P p p 4 r
i 00 0
b B 0 1 0 0
e - 0 0 | 0
y=-1 T O 0 _2
yp D
1 00 0
dw _ 0 10 0
do 0 01 0
—(v=1)5 s
SCELL SN

e We calculate the residnal dW in conservative variables. We then transform dW to
dw as before. Next we multiply by P and finally transform back to conservative
variables dW and update the solution. This is algebraically equivalent to the first
option but requires three matrix multiplies instead of one. However, it offers more
flexibihity.

e Similar to the previous suggestion we calculate the residual dW and transform;
to conservative variables dw and the multiply by P. At this stage we update the
primitive variables w. We then use the nonlinear relations to construct W from
w. This approach has advantages if the boundary conditions are given in terms
of the primitive variables (p or T) and so they can bhe specified exactly and not

approximately.




These methods are all equivalent for linear systems and the ditference between them
is mainly one of convenience.

Based on conservative variables Choi and Merkle [35] suggest two other precondi-
tioners. The first is

1 0 0 0
N ~ 0 1 0 0
(ZM PCMI—' 0 0 1 0

WP (A2 1) (M2 —1) o(M72-1) M2

This matrix is closely related to the first preconditioner Pr with o = 0 after switching
between (p.u.v, ) variables and conservative variables {see [54] for more details). We

get a similar looking preconditioner by replacing £, in the energy equation by %]—)—‘ and
then

! 0 0o 0

0 I 0 0

P =
0 0 1 0
w i .
. —u —v

For the Navier-Stokes equations they [13] suggest a different preconditioner given by

mF 0 0 0
S 0

(29) Povz=|
Hh2 0 p 0
E+p eR
P32 - 6 pupr :-—l

(‘hoosing 8§ = 0 or 1 made very little difference in their calculations.. For inviscid flows

= ¢*. As pointed out before, for both these preconditioners the ratio of eigenvalues of

the preconditioned system is not one in the limit of M = 0 but on the other hand the
systems are not singular at the sonic line.

We thus again see that the preconditioner is not unique for a given set of variables.
Instead many matrices are capable of reducing the spread of the wave speeds at low
Mach numbers. The main difference for inviscid flow between all these preconditioners
are the eigenvectors that result from the preconditioning. There has been little work
comparing the properties and cfficiencies of these preconditioners.

3.1 Supersonic Flow

We previously mentioned that for supersonic flow one can diagonalize both martices
A a3 simultaneously with a congruence transform (two dimensions only). We now

.. . . . , . .. . d v
explicitly give this transformation. We consider the symmetrizing variables (;E. u, v.8),
then

u ¢ 0 0 v 0 ¢ 0
c u 00 0 » 0 0
=10 0w o0 B=1 .09 10
00 0 u 00 0 »

10




Let ¢ = u* + v We assume u > 0,0 > 0. Since the flow is supersonic g > ¢. The
last row and column decouple and so we consider only a 3x3 submatrix. Define,

L L 1 fizc L [1=¢ 1=c
V2 V2 0 2V 94 2V 4 29
o el v o gtc 1 [q+c +c
Uy = V2q V2g g ty = %%’qu_—gﬁ
v v u 1 1
Vis V2 a NG -7 0
anid
1
aw 00
T = 0 q‘_( 0
1
0 0 7
and let @ = [TV, . Then
u -+ —\/Z]—(;—-:C? 0 0 v+ —;jt; 0 0
Q AQ = 0 u ~ \/—;ZL__? 0 QR*BQ = 0 v — —q\/_‘;_‘f—j_;
0 0 u 0 0 v

We then have the following trivial theorem:

Theorem 1 If we replace the matrices A and B by the same congruent transformation
then this is equivalent to preconditioning with a non-negative matrir. If the congruent
transformation is nonsingular then the preconditioning matrir is positive definite.

The proof follows since QQ*A = Q(Q*AQ)Q™" and similarly for B. Thus. the pre-
conditioner P is given by P = QQ*. The converse follows by letting Q be the square
root of P which exists whenever P is positive definite.

4 Difference Equations

Until now the entire analysis has been based on the partial differential equation. For long
waves 1t is reasonable to replace the numerical approximation by the original differential
equation. Since we are mainly interested in wave speeds these are governed by the low
frequencies. It is also possible to extend this analysis to the finite difference approxima-
tion. We now make some remarks on important points for any numerical approximation
of this system.

o For an upwind difference scheme based on a Riemann solver this Riemann solver
should be for the preconditioned system and not the original scheme. In [17] plots
are shown to illustrate the greatly improved accuracy for low Mach number flows
when the Riemann solver is based on the preconditioning

e For central difference schemes there is a need to add an artificial viscosity. Accuracy
1s improved for low Mach number flows if the preconditioner is applied only to the
physical convective and viscous terms but not to the artificial viscosity. Volpe [61)
shows that the accuracy of the origins. system deteriorates as the Mach number is

11
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reduced. The anthor has had a similar experience in three dimensional flows around
a fuselage configuration. The use of a matrix artificial dissipation ([31]) should be
based on the preconditioned equations as in the upwind difference scheme. On the
other hand Merkle (private communication) has indicated that he has no difficulties
with accuracy i the very low Mach regime. He can take the solution obtained with
a preconditioner and use that as initial data for a nonpreconditioned code which
then simply converges in one time step with the same small residual. In this
case both the original system and the preconditioned system give the same results
even on the difference level. Upwind schemes tend to have more difficulties with
accuracy for low Mach flows [17].

Hence, both for upwind and central difference schemes the Riemann solver or
artificial viscesity should be based on P7'PA| and not |A[. i.e. in one dimension
solve wy + Pf, = (|[PAlwe,), . For a scalar artificial viscosity |PA} is replaced
by the spectral radius of P A or equivalently the time step associated with the
preconditioned matrix. This is equivalent to not multiplyving the artificial viscosity
by P.

Similarly, when using characteristics in the boundary conditions these should be
hased on the characteristics of the modified system and not the physical system.
When using multigrid it is better to transfer the residuals based on the precondi-
tioned system to the next grid since these residuals are more balanced than the
physical residuals.

Preconditioning is even more important when using multigrid than with an explicit
scheme. With the original system the disparity of the eigenvalues greatly affects the
smoothing rates of the slow components and so slows down the multigrid method.
[56).

In addition to convergence difficulties there are accuracy difficulies at low Mach
numbers [61]. Some of these can be alleviated by preconditioning the dissipation
terms as indicated above. For very small Mach numbers there is also a difficulty
with roundoff errors as Zl— — oo. Several people have suggested subtracting
out a constant pressure from the dynamic pressure. A more detailed analysis [22]
suggests replacing the pressure p by p where p = l"’—,’:—'ﬂ and ¢ is a representative

Mach number.

We concliude from the above remarks that the steady state soluticn of the precon-
ditioned svstem may be different from that of the physical system. Thus, on the
finite difference level the preconditioning can improve the aceuracy as well as the
convergence rate.

Differential Preconditioners

In the previons sections the preconditioner Pwas a matrix. For the nonlinear fluid

dynamic equations the elements of Pinvolved the dependent variables. There are several

limitations with this approach.




We first consider a scalar equation

(30) wy + ww, + bw, =0,

We consider a uniform cartesian mesh with constant Ar, Ay. We define the aspect ratio
for this problem as

a/Ax
b/Ay

ar = aspect ratio =

This can be interpreted as the ratio of time for a wave to traverse a mesh in the x
direction relative to the time in the y direction. We note that the ratio % is meaningless
since this can be changed by a trivial change of variables.

[f this aspect ratio differs greatly from one then the standard schemes will converge
slowly since a time step appropriate for one direction is inappropriate for the other
direction. For a scalar equation, this is an artificial problem since, in practice, the mesh
would be chosen so that the aspect ratio is close to one. However, for a system of
equations there are many waves. If the aspect ratio is close to one for one wave it will
not be close to one for other waves. In the boundary layer for the acoustic wave ar =
% ~ % However, for the shear wave ar ~ %% and away from the wall but in
the boundary layer u is much larger than v. Hence, any mesh that is appropriate for
the acoustic wave is not appropriate for the shear and entropy waves and vice versa. In
addition there are viscous effects that we are ignoring, so that in practice the mesh is
constructed based on viscous effects and ignores both the acoustic and entropy waves.
For the scalar equation we are considering algebraic preconditioning cannot help (Li
and Van Leer, private communication). For a system the preconditionings we have
considered can partially rectify the difference of speeds between the various waves but
does not alleviate the aspect ratio difficulty.

The matrix preconditioners we have considered until now have a second difficulty.
For one dimensional flow one can choose the preconditioner as the absolute value of the
matrix A. Then all the resultant waves have identical speeds with only differences in
the direction, positive or negative. However, in two space dimension when the matrices
A and B do not commute it is not possible, in general , to equalize all the speeds.
Equivalently, we cannot diagonalize the system and reduce it to a sequence of scalar
equations even for the frozen coefficient problem.

To alleviate these two problems we shall allow the preconditioner P to contain deriva-
tives. However, as before we still demand that for the symmetric equations that P be
invertible and be positive definite.

For the scalar equation (30) we consider a preconditioner based on residual smoothing
[26]. This is given by

(31) (1 = 8:0,:)(1 = B,0yy) Resyen. = Resgy

where Res refers to the residual before and after smoothing. This residual smoothing
is usnally introduced to improve the time step and smoothing properties of an explicit
scheme as Runge-Kutta or Lax-Wendroff. Here, we analyze the scheme from a different
perspective, that of wave speeds. We assume that the aspect ration for the problem is
very large (i.e. b is large compared to a or Ay is small compared to Ar ). The question
we wish to address is whether /3, and 3, can be chosen so as to reduce this aspect ratio.

13




We first consider residual smoothing in one space dimension. In this case there is
no aspect ratio. Instead we will show how the concept of wave speeds explains the
phenomena that one should not use residual smoothing with a very large time step even
though it can be stabilized by choosing an appropriately large ;3..

(1 — 30,:)we + aw, =0

We analyze this for a semi-discrete equation with time continuous, the first x deriva-
tive approximated by a central difference and the second space derivative by a three
point central difference. In order to find the phase and group velocities we consider
solutions of the form w = e'**~*t) Here k is given and we find w from the dispersion
relation. For the one dimensional residual smoothing we have

_asmb/Ar
14 28(1 = cosb)

k=asinf, w

6 = kAx
To find a stability condition for a Runge-Kutta scheme in time we maximize w and

find that the worst case is cosf = I—i—g—u . We then find that the scheme is stable if

B>-(r*-1)

| e—

where r = E‘i—::‘ﬁ'a—l .Thus, from the viewpoint of stability we can choose any time step
we wish by choosing 3 sufficiently large. Nevertheless, one finds computationally that
convergence to a steady state is slowed down by choosing At, and hence /3, too large.
Optimal values are r ~ 2. We shall now show from the viewpoint of wave propagation
that it is not good to choose a very large time step.

Residual smoothing adds a term w,,, to the original differential equation. Such a
term is a dispersive term i.e. the energy is not reduced but now the speed of a plane wave
is no longer constant but instead depends on the wave number. The main purpose of
this term is to increase the time stability limit. However, as in defining the aspect ratio,
increasing the time step is meaningful only if we normalize the solution in some way,
otherwise we are merely rescaling the time dimension. Hence, the appropriate quantity
is not the time step but rather the time it takes a wave to transverse one cell (assuming
Aur is constant). The phase speed of a plane wave is given by

a

1 4+ 43sn%0/2

w
I?p-_-l—;—:

Let 3 = i(r2 — 1) and multiply v, by r to get the distance transversed in time At.

2r
(r2 4+ 1) = (r2 — 1)cosb
For the long wave lengths cosf ~ 1 and so s, ~ r, i.e. the long wave lenths move

r times further in one time step. If we look at § = 7/2, we have s, = r—f:—_—] < 1. Thus
this frequency moves slower than without residual smoothing. For the highest frequency

(32) sp = relative phase distance =
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on the mesh we have § = 7 and s, = 1. We therefore, see that the high frequencied

are actually slowed down by the residual smoothing and so take longer to exit from

the domain, furthermore the larger At is chosen the slower these waves go. Even more

important the larger At is chosen the more frequencies that are slowed down even though

the lowest frequencies travel faster. The breakeven frequency is given by cosf = :;:
We can also consider the group velocity. For the optimal 3 this is given by

o dw A)(r'Z + 1)cosh — (r? — 1)cos26
Tdk T [+ 1) = (12 = 1)cosf)?

and

(r2 4 1)cosd — (r? — 1)cos26
(r2+1) — (72 — l)cosl

The situation now is even less favorable than hefore. Again, the lowest frequencies are
sped up by a factor r. The frequency § = 7/2 is slowed down by an additional factor of
:z;} and the highest frequency § = © now reverses direction and goes upstream .

In figures (la-1c) we plot the phase and group relative distances for r=2,5,10. As
demonstrated above we gain a factor of r for the low fequencies but actually lose compared
with r=1 for the high frequencies. As r is increased more frequencies get slowed down.
Because we are considering the semi-discrete equation and residual smoothing is purely

dispersive there is no damping of the waves. For a Runge-Kutta scheme one finds that

(33) Sg = S

as r is increased that the damping of high frequencies decreases. Thus, for large r the
high frequencies do not propagate very fast and are not damped either. This explains
one in practice one chooses an r of about two for the greatest increase in the convergence
rate to a steady state.

We next consider the two dimensional equation. To ease the derivations we shall con-
sider the partial differential equation (31) rather than the finite difference approximation.
We rewrite (31) as

(31) Uy — Brtlrrs = Bytlyye + BeByllpryy = atz + buy,

We are interested in the effect of high aspect ratios. So we consider Ay << Ar . By
rescaling we instead consider a uniform mesh but @ << b. In particular we shall choose
a=¢, b=1.

i(kyrtk k2

Consider solutions of the form u =€ v¥=w!) or equivalently u = ¢'*¥~2 where

k= (k. k,) and F = (r.y). Substituting this into (34) we get

143,
3, = O(1),4, = O(1). This is different than what is normally chosen for in residual

smoothing ([50]).

We now consider differential preconditioners for the Euler equations. We shall only
considered the linearized equations with constant coefficients. This will now be a matrix
preconditioner where the elements of the matrix contain partial derivatives. We first

ek, + k
kroky) = —
w( y) (1 +,Hrkf.)(l +/3yk5)
Hence, w(1,0) = —— and w(0,1) = lw:—ﬁu If we want these to be equal then we need
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rewrite (24) in a more relevant differential form. Thus, the Euler equations can be
written as

(35) w,+Lw=20

with w = (p.u, v, S)" . We next define
Q@ = ud, + v0,

Since, all coefficients are assumed constant Q commutes with d, and J, then

29, 0
1.« 0 0
(36) L= g.dy 02 Q0 0
0 0 0 @
Let
(37) D=Q*— 2+ d2).

We now replace (35) by the preconditioned system

(38) w, + PpLw =0

with

Q* —p0,Q —pld,Q 0
‘ -19, Q* - A0 Fo.0, 0
(39) Po=1| _iy o0, - o
0 0 0 D

One can then verify that
PpL = QDI, Py =D7'Q7'L

One can of course replace the D in the lower right corner of Pp by the identity
matrix. Then PpL is not the identity matrix but is still a diagonal matrix. We can nse
simpler matrices than Pp by considering congruent transformations. We consider the
symmetrizing variables r(%f, u,v,S), then

Q cd. cdy 0

] ecd: Q@ 0 0

" ledy 0 Q O

0o 0 0 Q

Let,

Q —cd. —cd, 0 Q& 000
I O T T v | —cd, 100
(1 Pe=14 o 10 P = —ed, 010
0 0 0 ] 0 0 01
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then

DQ 0 0 0

e | 0 @ o o
PelPE=1 § Q 0
0 0 0 Q

so we have diagonalized L by a congruent transformation. But,
P t t-1 pt
eLPg = Pg (PgPgL)Pg.

so the congruent transform is similar to a preconditioning with a positive definite matrix
PLPE. Alternatively, (PLPE)L is similar to a diagonal matrix.

Q —cd, —cd, 0
—cdy 14202 a0, 0
—cdy 0.8, 14020

0 0 0 1

Note that PEPE looks similar to Pp but is not identical. PEPg has fewer deriva-
tives along the identical but PEPEL is only similar to a diagonal matrix while PpL is
diagonal and even a scalar differential operator multiplying the identity matrix. These
transformations are independent of the flow regime as long as the preconditioner is non-
singular.

These preconditioners are connected with the techniques used in distributive Gauss-
Seidel smoothers for mmltigrid methods ([6].[7]).

It remains to show that P is nounsingular. We have four eigenvalues and corresponding
eigenfunctions. As usnal the entropy wave decouples. For this wave P has an eigenvalue
D and an eigenfunction (0,0,0,1) . For the shear wave P has an eigenvalue 1) and the
eigenvector is (v, vy, 03, 0) where

[)1’1 =0

(I)I‘z (.)U:;
Di——+—)=0
( A.r + dy )

The other two ‘acoustic’ eigenvalues of P are Q* £ cQ, /0% + 9% and the cigenvectors

satisfv the pseudo-differential equation

' ‘ 3I% Jv,
(2 1L 2 2ol (22 - 22 =
[(( A7+ 37) £ Q\ /D2 + O ( ar  dy ) !

[ = pe [ 202, O
Tz 485 = pe ((').r + dy

We therefore have to show that the cigenvalues are all nonzero so that P is nonsin-
gular. The operator D is just the potential operator i.e. for any variable w

Dwe = (v = g, 4 2ueie,, + (0 - iy,
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For subsonie flow this is an elliptic operator and so invertible. For supersonic flow D
is a hyperbolic operator . Similarly. Q is a hvperbolic operator denoting convection along
a streamline. Thus given appropriate boundary conditions this too shuild be invertible.
At a stagnation point Q is singular and so it is necessary to limit the values of 1 and n
v in the definition of Q so that they do not become too small in a neighborhood of the
stagnation point. A similar smoothing is needed near the sonie line. These arguments
have been applied to P but similar arguments work for PEPE.

With residual smoothing and Pp or PEPE we have increased the order of the system
and so changed the number of boundary conditions needed for the equation to be well
posed. To avoid this difficulty we do not solve the equation (38). Instead these precon-
ditioners are used as a post processor for the usual Euler or Navier-Stokes equations.
Thus, at cach time step we calculate a residual based on one’s favorite scheme. This
eives a predicted value of the change in time. Ay gicieq. We also update the boundary
conditions for the standard fluid dynamic equations. We then operate on Aw with P
with the bonndary condition that Nwerreeted = 0 L 1Le. we don'’t change the boundary
values calculated by the predictor. When we reach a steady state for the fluids equations
we are solving PAw.,req.s = 0 with zero bonndary conditions. Since P is invertible
A = 0, e, we preserve the steady state. Thus, in essence we are imposing the fluid
dynamic boundary conditions between the P operator and the L operator.

6 Alternate Methods, Time Dependent Problems
and Viscous Problems

The justification for preconditioned schemes began with low Mach number flows. For
such flows other techniques exist beside preconditioning the equations. The method of
time inclining has similarities to preconditioning [15] .

The basts of one such method is to use an implicit scheme. However, a two dimen-
sional implicit method is too expensive to be efficient. Thus. one classically uses an
ADI approach. However, it is known that with ADI one cannot choose a very large
time step and converge guickly to the steady state. The splitting errors that occur in
the ADI method couples the waves together and one cannot choose an appropriate time
step for cach wave. Instead one attempts to separate those terms in the equations that
contcibute to the fast aconstic waves from the slow components. One than can use a
semi-implicit method which is implicit for the fast waves and explicit for the slow waves.
Thus, the stability limit of the scheme is governed by the convective speed rather than
the acoustic speed . The explicit part can be either a leapfrog method ([20]. [21]). or
a two step method [22]. This can also be extended to the Navier-Stokes equations [23].
Alternatively. once these components are identified, one can split the equations in several
pieces and solve each one separately as in the classical splitting methods [2] . In this
case one can nse an implicit method for the fast waves and an explicit method for the
slow waves and in addition one can split off the viscous terms. These methods work for
both time dependent and steady state problems.

A different alternative is to add terms to the equations which disappear in the steady
state. This has a connection with preconditioned methods when time derivatives are
added to the equations. However. in this approach other terms can be added beside

N
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time derivatives. One example, is to assime that the total enthalpy is constant in the
steady state for the compressible inviscid equations. One can then add terms to the
equations that depend on the deviation of the current enthalpy at each point from this
constant steady state enthalpy [25]. For the incompressible equations one can add the
divergenee of the veloeity field or time derivatives of the divergence to the momentnm
equation [11]. [13] . One can also consider a more general equation of state that reduces
to the physical one at the steady state [H] . In [27] they analyze the general case of such
psendo-unsteady svstems.

An extension of this technigue is to modify the differential equation to remove the
acoustic waves or other “had™ features. One must then justify that the solutions ob-
tained to these modified equations are close to the original equations for some flow
regime. Typical examples are the various Low Mach number expansions for the fluid dy-
namic equations or the geostrophic equations as an approximation to the shallow water
equations in meteorology.

For incompressible flow popular schemes are the SIMPLE [39] and MAC [18] algo-
rithms and their generalizations. These usually require the solution of a Poisson equation
for the pressure and then a pressure correction is used to update the momentum equa-
tions. These methods can then be generalized to the compressible equations [21]. Merkle.
Venkateswaran and Buclow [37] compare such methods to the preconditioned techniques
discussed in this paper. We again stress that the difference in these approaches is not
whether density or pressure are used as the dependent variable as one can transform
bhetween these variables. Thus, for example, one can modifyv the compressible continuity
equation by replacing the time derivative of the density with a time derivative of the
pressure. Thas s just another example of a matrix preconditioning as one can express
the pressure derivative as a combination of a density derivative togther with momentum
and energy derivatives. As deseribed above it is a programming decision whether one
should use this modified equation to update the pressure and then transfer to density or
to calculate the the appropriate preconditioning matrix and update the density. For a
linear system the two approaches are identical,

For time dependent problems the first approach just discussed is useful. However.
the preconditioned methods and the second approach of this section destroy the time
accuracy nnless the coefficients of the perturbation are chosen as a function of the mesh
size and so only affect terms of the order of the accuracy of the scheme. A more popular
approach has been to use a two-time scheme. In this approach cach new time level
is considered as the steady state of some problem.  Alternatively. the physical time
derivatives are considered a forcing terms. One now uses the preconditioned methods to
achieve this “steady state” which in reality is the solution at the next time step. Henee,
there is the physical time t and an artificial time 7 and 7 goes to infinity as an inner
loop within cach time step. [12] 0 [17]. [18]). Thus,

e e dfdg
—+ =+ =+ =0
ar i dr  dy
The main difficulty with this approach is its efficiency. It is reasonable to use snel
a technique only if cach “steady state” problem can be solved with little effort. Oune
advantage 1s that one usnally has good mnitial guess for the solution based on the solution

at previous time steps. However, it typically takes 10 subiterations for cach time step.
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Henceo this approach is ten times more expensive than a straight implicit method. One
can also nse an Newton iteration [38] at each time step. nevertheless, a semi-implicit
approach in ([20] - [23]) seems attractive.

All the methods discussed thus far have been based on an inviscid analvsis. For
the Navier-Stokes equations at high Revnolds number we do not expect any important
changes ontside the boundary faver. Inside the bonndary laver viscous effects modify
the eigenvalnes of the differential operator. We thas wish to equalize the contribution
of three qnantities. the aconstic waves, the conveetive waves and the viscous terms. In
particiular the viscous cigenvalues are very stiff and so the eigenvalues of the solntion
operator are no longer well conditioned. All the preconditioners presented above depend
on free parameters (3.oa.7.6) o Optimal values for these parameters were given for
inviscid How. A simple extension of the above methods to viscous How wonld keep the
same form for the preconditioning matrices hut allow these parameters to also depend
on the Revnolds or Prandtl number (see for exaniple [10] [[13] ). Thus, for example one
tinds that for the original pseudo-compressibility method that 3 shonld inecrease as the
Revnolds number is decreased. In [13] a new preconditioner is introduced Based on a
physical analysis of the Navier-Stokes equations (see 29). The difficulty is that the time
steps are governed by the acoustic and convective speeds and also a viscous contribution.

A basie problem for the preconditioned Navier-Stokes equations is well-posedness. For
the inviseid equations one can show that with the preconditioner P that the equations
can be syvmmetrized i a3 satisfy the imeguality (13). (see {54] ). The preconditioner
Py is constructed from the symmetrie form. Henee, in both cases we can reduce the
preconditioned equations to a symmetric hyperbolic system and so it 1s well posed. Once
one adds the viscons terms this analvsis is no longer valid. One possibility is to start
with a form that is svimetric for both the inviscid and viscous terms [1]. If one uses
a positive definite preconditioner for these variables then standard energy arguments
shows that the linearized preconditioned svstem is well-posed.

We now analvze the preconditioner Pyoa little more carefully for the incompressible
Navier-Stokes equations. We also lincarizee and so the coceflicients w3 are considered

as constant. The resultant preconditioned equations are

|
”ﬁ]’f + ", + ry = 0
ol
IR 3 e+ ugtly + vou, + pp = AN
arg
"{—2"1 + ugty + rav, +p, = /’A"

We next differentiate the second equation with respect to x and the third with respect
to v. We replace the diverzence of the veloeity from the first equation. Let I = ug(u,»+
P+ rolt, 4 ey). Then the pressure posatisfies an aconstic-like equation
(12)

/l (8}
- j—zl'u + Ap+ ;;AP; + ;5(”()]'1« + vopy ) = —

Thus, we replace the Poisson equation nsed in the MAC type approach by a gener-
alized wave equation for the pressure. We Fourier transform (42) | i.e. p = ¢ihirthay=20

and k% = K+ kL Then,
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(13) wh - [”(Uﬂkl + vokz) + i/ll/\'fz] w — k3= 0.

We first consider the case o = 0 (l.e. the original psendo-compressibility for the
primitive equations). Then

L VA BT S
(1) w = g

We now have two regimes to consider

case 1o |& small (e, k]2 < 132/ 4?)
Then (41} gives w . As expected g introduces a decav in the aconstic wave . The
speed of the wave (real part of w) is now slowed down for the same 3. We thus shonld

choose a larger .3 as pr increases to compensate for this (sce also [13]).

case 2: A large (.. [k]* > 13%/pu®) Now, w = ip|k)? [l + /1 — 1342 k2. Hence.

« 1s pure imaginary. Thus, these high frequencies do not propagate and their damping
is reduced by 3 (for the smaller damping mode). Thus, one also wants to increase .3 so
that most of the modes in the domain correspond to small [A] .

We next consider non-zero a. Let 4 = a(uphy + voks)

3 4 iplk (2SI R 4 42 — k] 4 200 p] k]2

(-15) W 9

Taking real and imaginary parts of the square root we see that only 72 enters into the
imaginary part of w, i.e. the decay rate. So the sign of a is not important for viscous
effects. Thus, it seems that o has no major impact on viscous flows and its advantage

comes from equalizing the flow speeds of the inviscid portion of the flow.

7 Computational Results and Conclusions

Numerous authors have used some of these preconditioners for both incompressible and
compressible flows. A selection of papers is presented in the bibliography. Here we
summarize a few of these calculations. Most of these computations have used central
difference approximations of the spatial derivatives and either a Runge-Kutta explicit
scheme or an AD.L implicit scheme in time.

For the original psendo-compressibility equations a number of authors (e.g. [10],
[45]. [11] ) have fonnd that a constant 3 works best. Rizzi and Eriksson [15] suggest
3t = mar(03,r(u? 4+ v?)) with 1 <7 <50 see also [9] . In [38] they also explore similar
tssnes with regard to upwind schemes.  As before their constant 0.3 nmmst depend on
the normalizations used. Arnone ([3], [1]) has used the original pseudo-compressibility
method to solve inviscid and viscous incompressible flow about cascades. A Rnnge-
Kutta method is used which is accelerated by a multigrid technigque. This method has
heen extended by the anthor to include the preconditioner Pp. In these caleulations
we find that 3 = constant is more robust than choosing 3 to depend on the speed
of the flow. In most cases using a variable 3 canses the iterations to diverge thongh
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when they do converge it is faster than the constant 4. Paul and Carlson [10] have a
similar three dimensional code for external flow over wings. This code has also been
extended to inclnde P, In both these codes the convergence is also very dependent on
the boundary conditions imposed. For some boundary conditions the code converged for

a range of @ and then o = 1 gave the fastest convergence rates as expected. However,
for other boundary conditions only the original pscudo-compressibility method o =0

would converge. Tt is suspected that the difficulties are connected with initialization.
Thus. o = [ though faster may be less robust o It would therefore be neccessary to start
the caleulation with o = 0 and only once the asvimptotic region is reached to change to
n =l

Hsu [19] also solves the incompressible eqnations nsing P, In this case an upwinded
approximation is used and the solution ix advanced using an AD.L method. They
examine in more detail the infhience of o and 3. Due to their implicit solver the code
convergences in all the cases they tried, mainly flows about a delta wing.. However, they
also find that 3 = 1 is faster than the variable 3. They principally investigated a = —1
but indicate that other a’s hehaved similarly. There have been no computations, to date,
for the incompressible eqnations nsing the Py preconditioner due to the newness of this
approach,

For the compressible equations at low Mach numbers early calenlations were done
by Brilev. McDonald and Shamroth [8] and a later by D. Choi and Merkle [I1]. and
also Y.H. Choi and Merkle [34] . These methods have mainly nsed A.D.L methods
thoueh some results with Runge-Kutta schemes have also been achieved. More recently
([17].[33]) results have been achieved with the Py preconditioner in conjunction with an
upwind scheme. Godfrey {private communication) indicates that there is not a great
difference between the two preconditioners. The use of the correet Riemann solver was
more important than the details of the preconditioner.

Much of the most recent work has gone into extending these results to the Navier-
Stokes equations [13] and chemistey ([17]. 48]0 [B8]). A number of anthors have also
investigated extensions to time dependent problems based on a two-time approach ([16].
(18], [62)).

Here we present only one set of resnlts. This is for incompressible flow aronnd a
VKD cascade with a nonperiodic mesh across the wake. The mesh is shown in figure
2a. A Runge-Kutta multistage scheme is nsed with a multigrid aceeleration. The code
is a extension of that of Arnone and Stecco [1]. The flow is turbulent with a Reynolds
number of 300,000 and Baldwin-Lomax tvpe turbulence model is used. In table T we
present the residual of the pressure after 50 steps on the first mesh. 50 steps on the
second mesh and 300 steps on the finest mesh. We thus see that a =1 gave the fastest
convergence rates, thongh the differences were not very large. We were able to run only
the moditied Van Leer et. al. preconditioner and even that only with a constant o and
Fwith o = L as opposed 1o the value of o given in (22). With this value of o the terms

: ! 2
with v + ¢4 do not appear.
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method 31 a | residual
precondition AV L)1 6.63
precondition AV 110 1607
precondition AV I p-1 |5.76
no precondition AV bl 6.3
no precondition AV 110 6.23
no precondition AV 1 1-1 |5.76
precon AV eq. (22) P05 6.3
no precon AVeq. (22) |1 0.5 | 6.22

Table 1: Convergence rate

In figure (2¢) we also plot the convergence rate for the first example in the table.

In conclusion these computations show that one can caleulate both inviscid and

viscous flows and even those with chemical reactions over a large range of Mach numbers
going down to M = 107" in some cases. There is need for further work on the effect

of the parameters in the preconditioners on the convergence rates. It is not understood

why constant /3 seems to be the best choice. There is also need for further investigation

on the effect of boundary conditions on these preconditioners.
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